1.まずは軽〜くおさらい
まずは、Mutant Fish のベースセットとカバーセットについて軽くおさらいしましょう。
すでにご存じの方々は2に進んじゃってください😊
このページでは、タテ列・ヨコ列・ブロックの総称として house という用語を使うことにします。
また、ベース house、カバー house というワードも使います。
それぞれ「ベースセットの一員である house」「カバーセットの一員である house」を表すものと考えてください。
Mutant Swordfish を例に話を進めていきましょう。
その Fish は以下の状況になっていました。
- 3個の青色 house において、数字1の入り得るマスは★しかなかった。
- そして、その★マスすべてを3個の黄色 house で覆い尽くせた!
青色 house を全部まとめてベースセット、黄色 house を全部まとめてカバーセットと呼びました。
ベースセット内部にある★マスは1つ残らずカバーセットで覆われています。
この状況の時、次の結論が得られましたね。
- すべてのカバー house において、必ずどれかの★マスに数字1が入る。
よって、カバーセット内部の★以外のマスに数字1は入らない。
図1-1 の×印マスに数字1は入らず、★以外の黄色マスは全滅!
……となったわけです。
さらに、ベース house 同士が交わっている場合、重要な条件がもう1つありました。
- ベース house 同士の交差箇所に★マスは1つも存在しない。
言い換えると、どの★マスもただ1つのベース house に属している。
図1-2 では交差箇所は2マスありますが、どちらも★マスではありません。
どの★マスも複数の青色 house を掛け持ちしていないんですね。
さて、ここで1つ疑問が生じます。
もしベース house の交差箇所に★があったとしたら、どうなるんでしょう?
実は、その場合は上記の結論は一切成り立ちません。
しかし、実は、★の位置しだいでは別の論理展開ができたりするんです。
それについて、以下のセクションで解説していきましょう。
2.endofin って何ぞや?
図2-1 を見てみましょう。
3個の青色 house(タテ1列&ヨコ2列)において数字1の入り得るマスを探した時、★の位置にしかなかったとします。
★は12個あります。
なんだか★の配置が前セクションとすごく似てますね!
違うのは「★が2個増えた」くらいのモンでしょうか。
これも同じようにカバーセットで覆い尽くすことができそうですね。
じゃぁ、3個の house で覆ってみましょうか。
おぉ、★マスを全部覆い尽くせました😊
タテ1列とブロック2個で見事スッポリ!(図2-2)
ただ、今回の Fish は今までとは決定的に違うところがあります。
複数の青色 house に属している★マスがあるんです。
赤色★のマスが2個、なんと、どちらも2つのベース house を掛け持ちしている!
この掛け持ちしている★マスのことを endofin と呼びます。
fin は「ひれ」という意味です。
"Fish" 系の解法らしく、魚の「ひれ」ですね。
ちなみに、endo は「内部の」という意味を持つ接頭辞です。
ここでは「カバーセットの中にあるひれ」と解釈すると良いでしょう。
上記では endofin が2個ありましたが、endofin は何個あってもかまいません。
複数のベース house に属している★マスがあれば、それが endofin なんですね。
3.どういう結論になるの?
では、endofin があった場合はどんな結論が待っているんでしょう?
それを解説していきます。
このセクションからは、新しい Mutant Fish を使って解説しましょう。
4個の青色 house(タテ1列&ヨコ3列)において数字1の入り得るマスを探した時、★の位置にしかなかったとしましょう(図3-1)。
Mutant Jellyfish だけあって、やたら★が多いですね。
この★マスをカバーセットで覆い尽くしてみます。
カバーセットで★マスを覆い尽くしました(図3-2)。
タテ2列&ブロック2個でスッポリ覆えた😊
というわけで、こういう状況になりました。
- 4個の青色 house において、数字1は★マスにのみ入り得る。
- その★マス全部を4個の黄色 house で覆い尽くせた。
- 赤色★マスは endofin。
ベースセットは青色のタテ1列&ヨコ3列です。
カバーセットは黄色のタテ2列&ブロック2個です。
実は、単に endofin が散らばっているだけだと何の結論も得られません。
しかし、どの endofin とも house を共有している黄色マスがある場合、次の結論が得られるんです。
- カバーセット内部の★以外のマスのうち、どの endofin とも house を共有しているマスがある。そのマスに数字1は入らない。
図3-3 だと、×印の2マスが該当します。
この2マスはカバーセット内部にあり、かつ、どの endofin ともブロックを共有しています。
この2マスに数字1は入らなくなるんですね。
なぜこういう結論になるんだろう?
それを解説しましょう。
とりあえず言えるのは、次のどちらかが必ず成り立つということです。
- どれかの exofin に数字1が入る。
- どの exofin にも数字1は入らない。
この両者についてそれぞれ論理展開していきましょう。
まずは前者。
これは簡単です。
endofin のどちらに数字1が入ろうとも、同じブロック全体に数字1が入らなくなります(図3-4 ×印)。
次に後者。
この場合は、endofin がすべてなくなります。
つまり、ただの Mutant Jellyfish に様変わり!
ということは、★以外のすべての黄色マスに数字1が入らなくなります。
★以外の黄色マス、全滅!(図3-5 ×印)
図3-4 と 図3-5、両者のうち片方が成り立ちます。
2つの図を見比べてみると……共通して×印のついているマスがありますね!
そのマスに数字1は入らないということが言えるんです。
具体的には 図3-6 の2マスです。
図3-3 の結論通りになりましたね😄
これが endofin を持つ Fish がもたらす結論なんです。
4.Fish の性質が壊れる !?
Fish が endofin を持っているか否かによって、まったく違う結論になりましたね。
ところで、その Fish 自体についても何かしら異なる性質があったりするんでしょうか?
それをちょいと解説してみます。
さて。
endofin である★マスにも数字1が入る可能性はありますよね。
実際にそこに1が入ったとしたら、どんなことが起こるんでしょう?
例えば、上の endofin に数字1が入ったとしましょう。
すると、2個のベース house に同時に1が入りました。1の入っていないベース house は一番下の青色ヨコ列しかありません。そこの★マスにも1を入れてみます。
例えば 図4-1 のような感じ。
この状態で、ちょいとカバーセットに目をやると……ん? あれ?
数字1が入ってないやん!
なんと、右下の黄色ブロックに数字1がありません。
どの★マスにも1を入れられない、まっさらな黄色ブロックができてもぅた😐
実は、これは 図4-1 に限った話ではありません。
endofin に数字1がある限り、どれかのカバー house はこういう運命になるんです。
もちろん、そのカバー house では★以外の黄色マスに数字1が入ることになっちゃいますね。
個々の青色 house に数字1を1個ずつ入れていくと、どの黄色 house も★マスに自動的に数字1が入ってしまう。
これが Mutant Fish の持つ大きな性質でした。
「数字1が入る」ということに関して、青色 house と黄色 house がちょうど1対1に対応している。
そう捉えることができます。
ところが、endofin に数字1が入るとその対応は壊れてしまうんですね。
青色対黄色の対応が「2対1」になってしまう。だから、黄色 house が余ってしまい、まっさらな黄色 house ができた。
そんな感じです。
endofin があるかないか、たったそれだけで Fish の性質も結論もガラッと変わってしまう。
見た目は似ていても、中身はだいぶ違うんですね。
5.exofin も endofin も持つ Fish
fin には exofin と endofin の2種類ありました。
このセクションでは、その2種類の fin を兼ね備えている Fish を紹介します。
図5-1 の盤面はこういう状況になっています。
- 4個の青色 house において、数字1の入り得るマスは★のみだった。
- そして、その★マスを4個の黄色 house で覆ってみた。
- すると、★マスが1個漏れてしまった。
- また、複数の青色 house に属している★マスがある。
ベースセットは青色のタテ2列&ヨコ2列です。
カバーセットは黄色のタテ1列&ブロック3個です。
この Fish には exofin も endofin も1個ずつ存在します。
さて、どこにあるでしょう?
ここにあったんです。
青色★と赤色★、この2つです(図5-2)。
- 青色★マスが exofin。
- 赤色★マスが endofin。
この Fish は、exofin も endofin も付いている Mutant Jellyfish なんですね。
字面を見るとスゴイですね。
体外にも体内にもひれが付いているクラゲ。
あまりにも "mutant" すぎる😅
この Fish からどういう結論が得られるんでしょう?
実は、結論はセクション3とほとんど同じです。
- カバーセット内部の★以外のマスのうち、どの exofin/endofin とも house を共有しているマスがある。そのマスに数字1は入らない。
図5-3 だと×印の2マスが該当します。
そのマスはカバーセット内部にあり、exofin とはヨコ列を共有し、endofin とはブロックを共有しています。
そのマスに数字1は入らないというわけです。
理由は3に似ています。
次のどちらかが成り立つので、両者をそれぞれ論理展開していけばOKです。
- exofin/endofin のどれかに数字1が入る。
- どの exofin/endofin にも数字1は入らない。
更新履歴
- 2022. 2. 5.
- 新規公開。
- 2023. 3.31.
- ページ冒頭に難易度表記を追加。